36 research outputs found

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Embedded pitch adapters: a high-yield interconnection solution for strip sensors

    Get PDF
    A proposal to fabricate large area strip sensors with integrated, or embedded, pitch adapters is presented for the End-cap part of the Inner Tracker in the ATLAS experiment. To implement the embedded pitch adapters, a second metal layer is used in the sensor fabrication, for signal routing to the ASICs. Sensors with different embedded pitch adapters have been fabricated in order to optimize the design and technology. Inter-strip capacitance, noise, pick-up, cross-talk, signal efficiency, and fabrication yield have been taken into account in their design and fabrication. Inter-strip capacitance tests taking into account all channel neighbors reveal the important differences between the various designs considered. These tests have been correlated with noise figures obtained in full assembled modules, showing that the tests performed on the bare sensors are a valid tool to estimate the final noise in the full module. The full modules have been subjected to test beam experiments in order to evaluate the incidence of cross-talk, pick-up, and signal loss. The detailed analysis shows no indication of cross-talk or pick-up as no additional hits can be observed in any channel not being hit by the beam above 170 mV threshold, and the signal in those channels is always below 1% of the signal recorded in the channel being hit, above 100 mV threshold. First results on irradiated mini-sensors with embedded pitch adapters do not show any change in the interstrip capacitance measurements with only the first neighbors connected

    Charge collection and field profile studies of heavily irradiated strip sensors for the ATLAS inner tracker upgrade

    Get PDF
    The ATLAS group has evaluated the charge collection in silicon microstrip sensors irradiated up to a fluence of 1×1016 neq/cm2, exceeding the maximum of 1.6×1015 neq/cm2 expected for the strip tracker during the high luminosity LHC (HL-LHC) period including a safety factor of 2. The ATLAS12, n+-on-p type sensor, which is fabricated by Hamamatsu Photonics (HPK) on float zone (FZ) substrates, is the latest barrel sensor prototype. The charge collection from the irradiated 1×1 cm2 barrel test sensors has been evaluated systematically using penetrating β-rays and an Alibava readout system. The data obtained at different measurement sites are compared with each other and with the results obtained from the previous ATLAS07 design. The results are very consistent, in particular, when the deposit charge is normalized by the sensor's active thickness derived from the edge transient current technique (edge-TCT) measurements. The measurements obtained using β-rays are verified to be consistent with the measurements using an electron beam. The edge-TCT is also effective for evaluating the field profiles across the depth. The differences between the irradiated ATLAS07 and ATLAS12 samples have been examined along with the differences among the samples irradiated with different radiation sources: neutrons, protons, and pions. The studies of the bulk properties of the devices show that the devices can yield a sufficiently large signal for the expected fluence range in the HL-LHC, thereby acting as precision tracking sensors

    Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Get PDF
    A radiation hard nþ-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the “ATLAS ITk Strip Sensor collaboration” and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in “punchthrough protection” (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1 1016 neq/cm2 , by reactor neutron fluence of 1 1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for microdischarge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07

    Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    Get PDF
    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips

    Charge collection in irradiated HV-CMOS detectors

    Get PDF
    Active silicon detectors built on p-type substrate are a promising technological solution for large area silicon trackers such as those at the High Luminosity LHC, but the radiation hardness of this novel approach has to be evaluated. Active n-in-p strip detector prototypes CHESS2 for ATLAS with different substrate resistivities in the range of 20–1000 Ωcm were irradiated with neutrons and protons up to a fluence of 2×1015neqcm−2 and 3.6×1015neqcm−2. Charge collection in passive test structures on the chip was evaluated using Edge-TCT and minimum ionising electrons from 90Sr. Results were used to assess radiation hardness of the detector in the given fluence range and to determine parameters of initial acceptor removal in different substrates

    The tracker in the trigger of LHCb

    Get PDF
    Situated at the LHC, the LHCb experiment is to measure B meson decay with high statistics. Its primary goals are the establishment of CP violation parameters with high precision, and the study of rare B meson decays to look for physics processes beyond the Standard Model. In this thesis, an overview is given on the Outer Tracker (OT) subdetector of the LHCb experiment. The requirements on efficiency, resolution, occupancy and radiation hardness are discussed. The detector design and readout electronics of the OT, a gas filled detector, are presented. To meet the requirements, straw tube cathodes of 4.9mm inner diameter surround the anode wires. The tubes are filled with an Argon based counting gas at atmospheric pressure, allowing for a channel resolution better then 200mum. To limit multiple scattering, the OT is built from lightweight composite materials, resulting in a momentum resolution of dp/p < 0.6% for p between 0 and 150 GeV/c. From extensive ageing tests involving single channels as well as entire prototype modules, the OT seems resistant to particle fluxes up to 60 kHz/cm^2, corresponding to an integrated dose of 100 krad, and accumulated charges of 1.3C/cm straw tube in 10 years of operation. The T stations, consisting of the OT and Inner Tracker subdetectors is used for particle momentum measurement. In this thesis, an algorithm is presented which uses binary responses from the T stations to estimate the momentum of continuations of track segments reconstructed in the VELO. The track finding efficiency is about 90% for tracks with a pT between 0.8 and 10 GeV, the momentum resolution is below 2%
    corecore